Integrales inmediatas

Constante	$\int kdx = kx + C$
Potencia	$\int x^m \cdot dx = \frac{x^{m+1}}{m+1} + c m \neq -1$
Potencia de exponente menos uno	$\int \frac{dx}{x} = \ln x + C$
Recíproco de Raíz cuadrada	$\int \frac{1}{2\sqrt{x}} \cdot dx = \sqrt{x} + c$
Exponencial natural	$\int e^x \cdot dx = e^x + c$
Exponencial	$\int a^x \cdot dx = \frac{a^x}{\ln a} \ x + c a > 0$
Coseno	$\int \cos x \cdot dx = \sin x + c$
Seno	$\int \sin x \cdot dx = -\cos x + c$
Secante cuadrada	$\int sec^2x dx = tanx + C$

Cosecante cuadrada	$\int csc^2xdx = -cotx + C$
Secante por tangente	$\int \sec x \tan x dx = \sec x + C$
Cosecante por cotangente	$\int \csc x \cot x = -\csc x + C$
Arco seno	$\int \frac{1}{\sqrt{1-x^2}} \cdot dx = \arcsin x + c$
Arco tangente	$\int \frac{1}{1+x^2} \cdot dx = \arctan x + c$
Arco secante	$\int \frac{1}{ x \sqrt{x^2 - 1}} dx = arc \sec x + C$